Bone formation in rabbit cancellous bone explant culture model is enhanced by mechanical load
نویسندگان
چکیده
BACKGROUND When studying and designing an artificial bone in vitro with similar features and functionality of natural bone by tissue engineering technology, the culturing environment, especially the mechanical environment is supposed to be an important factor, because a suitable mechanical environment in vitro may improve the adaptability of the planted-in tissue engineering bone in the body. Unfortunately, up to now, the relationship between mechanical stimuli and natural bone growth has not yet been precisely determined, and it is so imperative for a prior study on effect of mechanical loading on growth of the natural bone cultured in vitro. METHODS Under sterile conditions, explant models of rabbit cancellous bone with 3 mm in thickness and 8 mm in diameter were prepared and cultured in a dynamic loading and circulating perfusion bioreactor system. By Micro-CT scanning, a 3D model for finite element (FEM) analysis was achieved. According to the results of FEM analysis and physiological load bearing capacity of the natural bone, these models were firstly subjected to mechanical load with 1Hz frequency causing average apparent strain of 1000 με, 2000 με, 3000 με and 4000 με respectively for 30 min every day, activities of alkaline phosphatase (AKP) were detected on the 5th and the 14th loading day and on the 14th and the 21st day, mechanical properties, tissue mineral density (TMD) of the bone explant models were investigated and Von-kossa staining and fluorescence double labeling assays were conducted to evaluate whether there were fresh osteoid in the bone explant models. In addition, Western blot, Elisa and Real-time PCR were employed to analyze expression of Collagen-I (COL-1), bone morphogenetic protein-2 (BMP-2) and osteoprotegerin (OPG) protein and RNA. RESULTS The explant models of rabbit cancellous bone prepared under sterile conditions grew well in the bioreactor system. With the increasing culturing time and load levels, bone explant models in groups with 1000 με and 2000 με average apparent strain experienced improving mechanical properties and TMD (P<0.05), and results of Von-kossa staining and fluorescence double labeling also showed apparent fresh osteoid formation. Under the same loading conditions, a up-regulations in protein and RNA of COL-1, BMP-2 and OPG were detected, especially, relative genes notably expressed after 21 days. CONCLUSION Our study demonstrated that mechanical load could improve function and activity of osteoblasts in explant models of cancellous bone. Through regulations of COL-1, OPG and BMP-2 secreted by osteoblasts, the mechanical load could improve the tissue structural density and stiffness due to formation of fresh osteoid.
منابع مشابه
Ex Vivo bone formation in bovine trabecular bone cultured in a dynamic 3D bioreactor is enhanced by compressive mechanical strain.
Our aim was to test cell and trabecular responses to mechanical loading in vitro in a tissue bone explant culture model. We used a new three-dimensional culture model, the ZetOS system, which provides the ability to exert cyclic compression on cancellous bone cylinders (bovine sternum) cultured in forced flow circumfusion chambers, and allows to assess mechanical parameters of the cultivated sa...
متن کاملA Trabecular Bone Explant Model of Osteocyte-Osteoblast Co-Culture for Bone Mechanobiology.
The osteocyte network is recognized as the major mechanical sensor in the bone remodeling process, and osteocyte-osteoblast communication acts as an important mediator in the coordination of bone formation and turnover. In this study, we developed a novel 3D trabecular bone explant co-culture model that allows live osteocytes situated in their native extracellular matrix environment to be inter...
متن کاملMechanical Loading Improves Tendon-Bone Healing in a Rabbit Anterior Cruciate Ligament Reconstruction Model by Promoting Proliferation and Matrix Formation of Mesenchymal Stem Cells and Tendon Cells.
BACKGROUND/AIMS This study investigated the effect of mechanical stress on tendon-bone healing in a rabbit anterior cruciate ligament (ACL) reconstruction model as well as cell proliferation and matrix formation in co-culture of bone-marrow mesenchymal stem cells (BMSCs) and tendon cells (TCs). METHODS The effect of continuous passive motion (CPM) therapy on tendon-bone healing in a rabbit AC...
متن کاملبررسی هیستو مورفومتریک استخوان اسفنجی مهره دمی رت در طی آبستنی
Pregnancy make demands upon maternal calcium hemeostasis and the extent to which the maternal bone mass is effected remains uncertain. Recently changes in the bone mass during human pregnancy have been associated also with the transformation of the cancellous architecture and the bone surface available for exchange. These jistomorphometrical structural changes were...
متن کاملEnhanced Periosteal and Endocortical Responses to Axial Tibial Compression Loading in Conditional Connexin43 Deficient Mice
The gap junction protein, connexin43 (Cx43) is involved in mechanotransduction in bone. Recent studies using in vivo models of conditional Cx43 gene (Gja1) deletion in the osteogenic linage have generated inconsistent results, with Gja1 ablation resulting in either attenuated or enhanced response to mechanical load, depending upon the skeletal site examined or the type of load applied. To gain ...
متن کامل